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1, 5 and 7. It is clear that the use of a higher NMIN 
gives better results for the average phase deviation as 
well as a lower number of phases with an error of over 
250 mcycles. An E map calculated from the phases 
obtained with NMIN equal to 7 revealed 162 atoms 
among the 240 strongest unique peaks; this number is 
not much larger than in the case of NMIN = 1, but the 
peaks were much higher, although the number of 
contributing reflections was smaller. 

The alternative procedure was also tested using A s = 
0 in (6), which is equivalent to the use of the usual 
formula (5). From the results given in the lower half of 
Table 3 it can be concluded that: (a) the final phase sets 
are almost centrosymmetric and (b) the use of a higher 
number for NMIN only slightly slows down the 
appearance of the other enantiomorph. For the sake of 
comparison an E map was calculated from the phases 
obtained with A 3 ---- 0 and NMIN = 7. Only 93 out of 
the 243 strongest unique peaks could be identified as 
atoms. 

The total computing time for the tangent extension 
procedure mentioned above ranged from 78 to 105 
c.p.u.s (on a Cyber 73 computer). The procedure based 
on the graphical determination of new phases took 147 s 
c.p.u, time for the 400 atom structure despite the fact 
that only + 1300 unique triplets were used in the final 
refinement cycles. Our conclusion is that the procedure 
based on graphical phase determination is rather 
expensive and difficult to optimize for accepting new 
phases. Since the procedure using (5) leads to a 
maximum number of more or less correct phases in a 
minimum of time, it is to be preferred. If this procedure 

is combined with a refinement procedure based on (6) 
the results are sufficiently enantiomorph specific to lead 
to a correct solution, starting from a medium-sized 
phase set. 

The main conclusion of this paper is that with a 
relatively simple improvement in the estimates used, the 
centricizing tendency of the tangent formula is efficien- 
tly blocked. However, since it is expected that better 
estimates will improve the quality of the final map, this 
will be an important part of our future efforts. 

The authors thank Dr C. H. Stam and Professor 
B. O. Loopstra for criticizing the manuscript. One of 
the authors (GJO) is indebted to the Netherlands 
organization for the advancement of pure research 
(ZWO) for financial support. 

References 

COULTER, C. L. & DEWAR, R. B. K. (1971). Acta Cryst. 
B27, 1730-1740. 

HAUPTMAN. H.. FISCHER, J.,. HANCOCK, H. • NORTON, 
D. A. (1969). Acta Cryst. B25, 811-814. 

RANGO, C. DE, MAUGUEN, Y. & TSOUCARIS, G. (1975). 
Acta Cryst. A31,227-233. 

SAYRE, D. (1972). Acta Cryst. A28, 210-212. 
SAYRE, (1978). Lecture Notes, Advanced Study Institute 

on Direct Methods 1978, Erice. 
SCHENK, n. (1972). Acta Cryst. A28, 412-422. 
SINT, L. t~ SCHENK, H. (1975). Acta Cryst. A31, $22. 

Acta Cryst. (1979), A35, 946-952 

The Archimedean Truncated Octahedron, and Packing of Geometric Units in Cubic 
Crystal Structures 

BY CHUNG CHIEH 

Guelph-Waterloo Center for  Graduate Work in Chemistry, University o f  Waterloo, Waterloo, Ontario, 
Canada N2L  3 G 1 

(Received 4 April 1979; accepted 4 July 1979) 

Abstract 

Any cubic crystal structure can be divided into small 
units in the form of congruent semi-regular (Archime- 
dean) truncated octahedra. The centers of these 
polyhedra can be chosen at invariant equivalent 
positions for most cubic space groups. The part of a 

0567-7394/79/060946-07501.00 

crystal structure enclosed by an Archimedean poly- 
hedron is called a geometric unit (or unit for short); 
however, the boundary of the unit may be relaxed to 
include a whole molecule or ion in case the geometric 
division is not convenient. Based on the properties and 
arrangements of such geometric units, there is an 
interesting relationship among the 36 cubic space 
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groups. All units in a crystal structure of any one of 16 
space groups are equivalent. There are 14 space groups 
to accommodate crystal structures with two types of 
independent units. Only crystal structures of space 
groups F23 and F43m consist of four types of 
independent units. The remaining four space groups are 
in the class with three types of geometric units. The 
arrangement of geometric units is represented by a 
sequence of one period along the body diagonals of a 
unit cell. The sequence of geometric units is a simple 
version of the packing map on a (110) plane. This 
packing map reveals structural features. 

i 

Introduction 

There is a continuous interest among scientists in the 
search for ways to represent crystal structures such 
that a correlation among them can easily be recognized 
(Pearson, 1967; Loeb, 1970; Wells, 1977). In the cubic 
system, it is the multitude and variety of the crystals and 
the complexity of their interrelations that confound a 
systematologist. In an effort to tabulate structural data 
in a systematic way, the writer is confronted with the 
problem of choosing a suitable unit that can be repre- 
sented by a formula. It is now realized that a unit can 
be chosen such that it is the part of a structure enclosed 
by a semi-regular truncated octahedron (vide infra) 
whose center is located at an invariant position. In 29 
out of 36 cubic space groups, these invariant equivalent 
positions have the highest symmetry. The origin and 
body center always serve as centers for these poly- 
hedra. This choice offers many advantages for 
representing and describing cubic crystal structures. 

This paper reports the validity of this choice. It is 
divided into three sections. To begin with, the geometry 
and properties of the semi-regular truncated octahe- 
dron will be discussed. The cubic space groups will then 
be classified according to the symmetry and properties 
of the geometric units; examples are given to show how 
the geometric unit concept is applied to represent 
crystal structures. The paper is concluded by a 
discussion. (a) 

In a mathematical sense, a polyhedron is a solid 
bounded by plane polygons. An octahedron and a cube 
are two of the five possible regular polyhedra whose 
faces are congruent regular polygons and whose 
polyhedral angles are congruent (Wells, 1977). The 
common volume enclosed by both a cube and an octa- 
hedron in normal crystallographic orientations (i.e. 
their symmetry elements coinciding) is a truncated 

octahedron. When a cube truncates the octahedron at 
points which divide the octahedral edges into three 
equal parts, the resulting solid is a semi-regular 
truncated octahedron, Fig. l(a). It is also called an 
Archimedean truncated octahedron. This is not a 
regular polyhedron because not all faces are congruent. 
There are six square faces and eight hexagonal faces. 
Since all edges have the same length, it is usually 
referred to as a semi-regularpolyhedron. 

Table 1 shows specific dimensions of a truncated 
octahedron which is Archimedean. Some of these 
properties are important in crystal chemistry. For 
example, knowing that hexagonal faces are closer to the 
center (0.8660) than square faces (1.0), an inscribed 
sphere that just touches the hexagonal faces will not 
make contact with the square faces. 

All symmetry elements of the octahedron (or the 
cube) are retained in the Archimedean truncated 
octahedron; therefore its point group is m3m. The 
threefold axes are normal to the hexagonal faces as 
are the fourfold axes to the square faces. The twofold 
axes pass through the mid-points of opposite edges 
running between pairs of hexagonal faces. Three pro- 
jections from 4-, 2- and 3-axes are shown in Fig. 1 (b), 
in which the projection from a twofold axis is the most 
important one. It is a view from a [ 110] direction and it 
will be used frequently in the next section. The profile of 
this view is a truncated rhombus. 

Packing of congruent Archimedean truncated oc- 
tahedra fills the entire space leaving no gap. This 
packing gives a structure with a body-centered cubic 
cell. The arrangement of polyhedra in the geometric 
structure is the same as that of atoms in a b.c.c. 
structure. Two views of this packing are shown in Fig. 
1, one along a [001], (c), and one along a [110] 
direction, (d). These are not exact projections of a 

(e) 

(d) ~. . 1.5..-.../j__ / 

The Archimedean truncated octahedron 

Fig. 1. (a) The Archimedean truncated octahedron, (b) views from 
four, two and threefold axes; the space filling packing viewed 
from (c) [0011 and (d) [ I 101 directions. 
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Items 

Coordinates of vertices 

Table 1. Measures of an Archimedean truncated octahedron 

Edge 
Polyhedron center to vertices 
Polyhedron center to mid edge 
Polyhedron center to centers of square faces 
Polyhedron center to centers of hexagonal faces 
Vertex to centers of square faces 
Vertex to centers of hexagonal faces 
Area of a square face 
Area of a hexagonal face 
Total surface of polyhedron 
Volume of polyhedron 

Normalized to unit 
distance between 
polyhedron center 

and square 
face center 

0,+½,1; 0,+ 1,+½ 
+½,_+ 1,0; + 1,+½,0 
+ 1,0,+½; +½,0,+ 1 
1/V~ = 0.7071 
V/5/2 = 1.1180 
3V/2/4 = 1.0607 

Measures 

Normalized to unit length 
for edges 

0,+ 1/V/2,+ ~/2; 0,+ V/2,+ 1/•2 
+ l/V/2,+ V/2,0; + V/2,+ 1/V/2,0 
-T-~/2,0,~1/V/2;-T- 1/~v~,O,+ V/2 
1 
v/-fO/2 = 1.5811 
3/2 = 1.5 

1 x/-2 = 1.4142 
v/3/2 = 0.8660 v/6/2 = 1.2247 
1/2 = 0.5 l/x/2 = 0.7071 
l/x/2 = 0.7071 1 
1/2 I 
3~/3/4 = 1.2990 3~/3/2 = 2.5981 
3 + 6~¢/3 = 13.3923 6 + 12V/3 = 26.7846 
4 8V/2= 11.3137 

particular aggregation because some polyhedra present 
in one are omitted in the other for clarity. The central 
Archimedean truncated octahedra in both (c) and (d)  
are at the body centers of the unit cells, if the centers of 
the other four polyhedra are defined as the origins. The 
stacking in a (110) plane, (d), has the advantage that 
all the Archimedean truncated octahedra are on the 
same level. The two Archimedean polyhedra per unit 
cell can equally be represented in a diagram. 

Classification of cubic space groups by geometric units 

Since the packing of Archimedean truncated octahedra 
fills the entire space, this polyhedron may be considered 
as a basic unit in a crystal structure. The part of a 
structure enclosed by this polyhedron is an idealized 
geometric unit. The natural boundaries between 
molecules or ions in some crystals may not be the same 
as those of the Archimedean truncated octahedra 
defined in the geometric sense; in this case we use the 
molecule or ion as a geometric unit. This relaxed 
definition simply means that some polyhedra in a struc- 
ture have 'bumps '  which fit into the 'craters'  of the 
others in the same structure. Nevertheless, the packing 
pattern is still the same as that of the Archimedean 
truncated octahedra. With the structure added as a 
property, the point-group symmetry of a geometric unit 
is not necessarily the same as that of an Archimedean 
truncated octahedron. 

Any cubic crystal structure can be described as 
packing of geometric units along (111 > directions. (i) 

All geometric units in some structures are identical; 
however, they may pack in one of the following ways: 
A, AA, and AA' along the ( 111 > directions, column 2 
of Table 2, where ,4, A'  and A'  indicate units related to 
A by i-, 4- and 4-axes respectively. (ii) In crystal struc- 
tures of Fd3c, the packing sequence is AA'A'A. (iii) For 
crystal structures of space groups Ia3d, I~43d and 
14132, there are two kinds of packing sequences 
running antiparallel to each other in < 111 > directions. 
(iv) Two types of geometrical units, A and B, may  be 
present and they combine to give various packing 
sequences. (v) There are cases that need three or, at 
most, four types of geometric units to describe cubic 
crystal structures. 

In this approach, a structure is divided into con- 
gruent Archimedean truncated octahedra which, 
whenever possible, are chosen in such a way that their 
centers correspond to invariant equivalent positions 
with the highest point symmetry in a space group, e.g. 
2(a) 43m 0,0,0, of I;43m. The point group of the geo- 
metric unit is the site symmetry of its center. For 
example, the geometric unit in the 143m crystal structure 
of hexamethylenetetramine (Dickingson & Raymond,  
1923) consists of a molecule, C6HnN 4, which belongs 
to a point group 43m. The unit is shown in Fig. 2. The 
profile of the Archimedean truncated octahedron 
outlines the actual area when viewed from a twofold 
axis. A crystal structure of any one of the five 
symorphic /-type space groups have identical geo- 
metric units and their arrangement on a (110) plane 
can be represented by Fig. 1 (d). 

Geometric units centered on equivalent points must 
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be identical. Their  or ientat ions  are not  a lways the same. 
For  example,  the two geometric  units at 0,0,0 and 1, 
for Cu20,  a P n 3 m  structure, are related to each other 
by an inversion center, Fig. 3(a); therefore, we can 
represent the a r rangement  of  geometric units by A,4. 

The helvite, Mn4(BeSiO4)3S , structure belongs to 
Pf43n (Hol loway,  Giordano  & Peacor,  1972). In this 
structure, the sulfur is located at the center of  the 
geometric unit, Fig. 3(b). There are four Mn atoms 
bound to the sulfur tetrahedral ly.  We see three in Fig. 
3(b) because the fourth one is directly underneath  the 

one that  is in front  of  the page. In addit ion to the sulfur, 
each Mn a tom is bonded to three oxygen a toms which 
each bond unsymmetr ica l ly  to a Si and a Be atom. The 
Si and Be atoms are located at the vertices of  an 
Arch imedean  t runcated oc tahedron  and they are 
shared among  the geometric  units. The dotted and 
dashed lines indicate the geometric units and the 
boundary  of  a (1 10) plane in the cell respectively. The 
or ientat ions of  the two geometric units are related by a 
90 ° rota t ion about  (001). This relationship in a 
sequence is indicated by A A '  in Table 2. The helvite 

Table  2. Class i f i ca t ion  o f  cubic  space  g r o u p s  a c c o r d i n g  to the  p r o p e r t i e s  a n d  a r r a n g e m e n t  o f  g e o m e t r i c  un i t s  

Number Geometric 
of unit(s) 

geometric in a 
unit types period 

1 A 

A~ 

AA' 

AA'/A'Jl 
AA , /ArX,* 

2 AB 

m w ss 

2 a 23 
2 a m3 
2 a 43 
2 a z{3m 
2 a m3m 

m: multiplicity; w: Wyckoffnotation; ss: site symmetry. 

Equivalent position(s) as 
center(s) of unit(s) 

m w ss m w ss 

2 a 23 
2 a 43 
2 a J,3m 
2 a 23 
2 a m3 
2 a 23 

16 a 23 
16 a :3 
16 ct 3 
16 et 3 

1 a 23 
1 a m 3  
1 a 43 
1 a 43m 
1 a m3m 

1 b 23 
1 b m3  
1 b 43 
1 b 43m 
1 b m3m 

AftBB 8 a 23 8 b 23 
8 a 43m 8 b 43m 

AA'BB'  8 a 23 8 b 23 
ABA'B'  8 a 23 8 b 23 
BAB',4 8 a 43 8 b m3 
ABIX:g* 8 a ~ 8 b 

3 ACBC 4 a m3 4 b m3 
4 a m3m 4 b m3m 

ACBC' 4 a 43 4 b 43 
ACBC/  4 a 3 4 b 
A 'C 'B 'C '  

4 A CBD 4 a 23 4 
4 a Z}3m 4 

8 e 23 
8 c 43rn 
8 c 23 
8T c 3 

m w ss Space group 

123 
Im3 
I432 
143m 
lrn3m 
1213 
Pn3 
Pn3n 
Pn3m 
P43n 
Pm3n 
P4232 
Fd3c 
la3d 
1;t3d 
14132 

/23 
Pm3 
P432 
P43m 
Pm3m 
P2,3 
P4132 
P4332 
Fd3 
Fd3m 

F4132 
F43c 

Fm3c 

Ia3 

Fm3 
Fm3m 
F432 
Pa3 

e 23 4 b 23 4 d 23 F23 
c 43m 4 b f43m 4 d 43m F43m 

* See Fig_ 5 for arrangements of geometric units on a (110) plane. Geometric units ,~, A' and ,4' have orientations 
symmetries 1, 4, and 4 followed by J. Other orientation relations are indicated by ". 

t Geometric units centered on singular points of 16(c), 8(c), or 16(e). 

related to A by 



950 THE A R C H I M E D E A N  T R U N C A T E D  O C T A H E D R O N  

structure is the same as that of sodalite and it is usually 
referred to as such. 

An F cell consists of 16 geometric units. There are 
four kinds that are independent of lattice translation 
and four of each kind per cell. On a (110) plane lie two 
of each kind and along the body diagonal is one of each 
kind within the boundary of a unit cell. This is indicated 
in Fig. 4. Those that are equivalent by lattice 
translation are labeled with the same letter. The 
sequence in a period consists of four geometric units, 

Fig. 2. A geometric unit in the I43m crystal structure of hexa- 
methylenetetramine, NH4(CHz) 6. 

. . . .  

- 

• . . . . . . .  (a) 

. . . .  

Sl(b ) B, 

Fig. 3. The arrangements of geometric units: (a) in Cu20, an 
example of AA repeating sequence; (b) in helvite [Mn 4- 
(BeSiO4)3S], an example of AA' repeating sequence. 

that is one of each kind. For crystal structures of space 
group Fd3c all four units are identical, however, with 
four orientations, Fig. 5(a). This unit belongs to point 
group 23, Table 2. 

For crystal structure of space groups la3d, Pa3 and 
la3, the unit cell can be divided into geometric units in 
the same way as that of an F cell. Geometric units at 
1 1  • 1 1  1 1 ~,0,~ are longer equivalent to the one ~,~,0, 0,~,~ and no 
at the origin in these space groups. These are compared 
in Fig. 5. The geometric units pack in two kinds of 
repeating sequence in an I lattice. One passes through 
the origin whereas the other passes through the center 
of a face in the unit cell. For example, this type of 
arrangement is indicated by AA'/,~/]' in Table 2. There 
are also two types of packing sequences of geometric 
unit in P lattices. Each sequence consists of four units, 
Table 2 and Fig. 5(c). 

The crystal structures of pyrite, FeS 2, belongs to 
Pa3. It is usually described as a pseudo NaCI structure 
with groups of Fe and S 2 in place of Na and CI 
(Pearson, 1972). This description is attributed to the 

A . . . .  A - - - A 

D 

1 I 

Fig. 4. Dividing of an F cell into 16 congruent Archimedean trun- 
cated octahedra showing only those with centers on a (110) 
plane. 

(a) Fdac (b) I03d 

(c) Pa3 (d) 1.3 

Fig. 5. Comparison of orientation orders of geometric unit for 
space groups Fd3c(a), la3d(b), Pa3(c), and la3(d). 



CHUNG CHIEH 951 

similar arrangements of geometric units in an F cell and 
in a structure of Pa3, compare Fig. 5(a) and (c). The 
orientation of geometric units in the structure with 
space group Pa3 is an important feature that can be 
recognized in Fig. 5(c). However, the centers for units 
indicated by C's are only singular points (x = ~) of 
equivalent positions 8(c) x, x, x; ½ + x, ½ - x, k; etc. 
The pyrite structure is common to many compounds. 
This is illustrated in Fig. 6(a), in which the Fe atom is 
labeled as A and A'. Being a single atom, A and A' have 
no orientation difference. Units B and B', S 2, have 
distinct orientations. The directionality of the unit B 
resulted in four orientations for the spaces centered on 
C, C', C and C'. The labels of geometric units in Fig. 
6(a) are the same as those in Fig. 5(c). If S 2 is replaced 
by a single sphere, Fig. 6(a) represents a NaC1 
structure. 

The molecular compound dodecachloropentasilane 
silicon tetrachloride, Si(SiC13)4.SiCI 4 crystallizes in 
F543c with Z = 8 (Fleming, 1972). Each molecule can 
be considered as a unit and they stack along the body 
diagonals of the cell with sequence ABA'B' ,  Table 2, 
where A and B represent Si(SiC13) 4 and SiC14 in any 
order. The molecule SiC14 which belongs to 43m point 
group is located at a site with 23 point symmetry but 
the other molecule Si(SiC13) 4 has only a 23 point sym- 
metry which is consistent with the site. The arrange- 
ment of these two types of molecules on a (110) plane 
is shown in Fig. 6(b). 

The five F-type symorphic space groups belong to 
two classes, Table 2, one with three geometric unit 
types and one with four. For the class that has three 

,0,~ . . . . .  oF~ . . . .  o ,&;- [ ~ [  -.A,- - .~ . -  : ~  

Ox . . . . .  O A , -  . . . .  dA . . . . . . . . . . . .  

(a) (b) 

(c) 

Fig. 6. Structures with unit cell divided into geometric units of an F 
cell: (a) pyrite, FeS2, a Pa3 structure; (b) dodecachloro- 
pentasilane silicon tetrachloride, Si(SiCIj)4.SiCI 4, a crystal 
structure with a repeating sequence of ABA'B' in space group 
F;13c; (c) geometric units in a f.c.c, structure, space group Fm3m; 
(d) four geometric unit types in the zinc blende structure, space 
group F43m. 

geometric unit types, we use the f.c.c, close-packed 
spheres as an example to demonstrate the use of this 
concept. This structure belongs to Fm3m. Fig. 6(c) 
shows a view of the packing when the model is cut from 
a (110) plane. The two circles in the central part of the 
diagram represent two spheres lying on the two face 
centers behind the page. The Archimedean truncated 
octahedron profiles show the boundary of idealized 
geometric units. The three units are a sphere, S, two 
tetrahedral holes, T and T, and an octahedral hole, O. 
The repeating sequence, STOT,  not only gives the 
proper ratio for spheres to holes of an f.c.c, packing, 
but also indicates the orientation and symmetry, 43m, 
of tetrahedral holes. If we use T to indicate tetrahedral 
holes and use the symbols of the element that constitute 
the geometric unit, the NaCI structure has a repeating 
sequence of NaTC1T. This indicates that the octa- 
hedral holes of the f.c.c, closed packing are occupied. 
Note that the repeating sequence can start with any 
geometric unit; it is origin independent. 

Crystal structures of space groups F23 and F543m 
have four independent geometric units. The zinc blende 
structure belongs to F43m and is shown in Fig. 6(d). 
The unit centered i 1 1 at B (~,~,~) is the empty space enclosed 
by a cage structure of four S and six Zn atoms, whereas 
the cage around D consists of four Zn and six S atoms. 
The sequence is ZnS--(S4Zn6)-(Zn4S6). 

Discussion 

It has been demonstrated that cubic crystal structures 
can conveniently be represented by geometric units that 
have the shape of an Archimedean truncated octahed- 
ron. The centers of these units usually coincide with 
invariant positions possessing the highest point sym- 
metry in most space groups. The arrangement of these 
units can be represented by a sequence which specifies 
their relative positions and orientations along the body 
diagonals of the cubic unit cell. 

Packing maps of geometric units on (110) planes are 
useful and perhaps second only to three-dimensional 
models in showing crystal structure. Thus the concept 
of geometric units provides a :base for summarizing 
crystal structural data in a simple way. Crystal 
structures can be classified and tabulated in terms of 
geometric units. 

In a few cases, the sequences for several space 
groups are the same. This sequence is origin indepen- 
dent; in cases with more than one unit we can start with 
any of them. These properties allow us to manipulate 
the representation in order to find correlations among 
crystal structures. Table 2 also presents an interesting 
relationship among the cubic space groups. 

In the discussion of molecular or ionic crystal 
structures, it is necessary to retain the natural aggre- 
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gates as an isolated identity. Therefore, the arbitrary 
geometric boundary should not be adhered to as a 
golden rule when applying this concept, but the fact 
that parts of a molecule may extend from one unit into 
surrounding units is not seen as a hindrance, so long as 
appropriate symmetries with regard to the center of the 
unit are obeyed. However, for metallic compounds 
where no natural boundary exists, the Archimedean 
truncated octahedron can be used as a guideline for 
dividing a structure into its geometric units. 

A common structural feature for normal y brasses is 
that they all consist of 26-atom clusters (Bradley & 
Jones, 1933). The cubic y-brass clusters all have 43m 
point symmetry and they can be regarded as geometric 
units. Crystal structures of both I?43rn and Pn3m 
consist of a single geometric unit type that has a 43m 
point group. Although there are many I43m y brasses, 
Cu20 is the only well characterized structure with a 
space group Pn3m. This is probably due to the fact that 
the 26 atom clusters cannot have the A, A arrangement. 
Both P?43m and Fd3m are in the class with two types of 
geometric unit that has point symmetry 43m. For the 
same reason that no y-brass structure belongs to space 
group Pn3m, y brasses with two types of cluster always 
belong to P43m. The space group F43m can accommo- 
date four geometric unit types that all belong to the 
43m point group. Indeed, alloys Snl~Cu41, Sn3Cu9Ni, 
Sn2AI2Cu12, Pt5Hg21 and PtaZnl~ are y brasses with this 
space group. 

Another common structure type with space group 
I43m is a-Mn. The geometric unit of this structure is a 
29-atom cluster. Unlike y brasses, no structure with two 
or four types of 29-atom cluster was ever found. 
Recently, Fornasini, Chabot & Parth6 (1978) reported 
the crystal structure of Sml~Cd45 which belongs to 
I43m. Interestingly enough, among the four geometric 
unit types, two are similar to the clusters found in 
),-brass except that there is an extra atom at the center. 
The other two are exactly like the 29-atom cluster 
found in a-Mn. 

Representation of crystal structures by lattice com- 
plexes treats all equivalent positions in a space group 

as isolated points (Fisher, Burzlaff, Hellner & Don- 
nay, 1973). The present method associates atoms in a 
crystal structure with the invariant points in most space 
groups. This association gives rise to the geometric 
units which fill space, forming crystals. The centers of 
geometric units form a few simple lattice complexes 
that can easily be understood, thus avoiding the use of 
complicated nomenclatures in the lattice-complex 
scheme. The combination of geometric units and lattice- 
complex concepts will simplify the description and 
systemization of cubic crystal structures. 

I thank Professors M. J. Buerger, W. B. Pearson and 
A. F. Wells for their helpful discussions and the 
National Research Council of Canada for financial 
support of this work. I am in debt to the Institute of 
Material Science, the University of Connecticut for 
providing an excellent working environment during my 
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